Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A subclass of early impulsive solar flares, cold flares, was proposed to represent a clean case, where the release of the free magnetic energy (almost) entirely goes to the acceleration of the nonthermal electrons, while the observed thermal response is entirely driven by the nonthermal energy deposition to the ambient plasma. This paper studies one more example of a cold flare, which was observed by a unique combination of instruments. In particular, this is the first cold flare observed with the Expanded Owens Valley Solar Array and, thus, for which the dynamical measurement of the coronal magnetic field and other parameters at the flare site is possible. With these new data, we quantified the coronal magnetic field at the flare site but did not find statistically significant variations of the magnetic field within the measurement uncertainties. We estimated that the uncertainty in the corresponding magnetic energy exceeds the thermal and nonthermal energies by an order of magnitude; thus, there should be sufficient free energy to drive the flare. We discovered a very prominent soft-hard-soft spectral evolution of the microwave-producing nonthermal electrons. We computed energy partitions and concluded that the nonthermal energy deposition is likely sufficient to drive the flare thermal response similarly to other cold flares.more » « lessFree, publicly-accessible full text available July 29, 2026
-
Abstract Solar flares are driven by the release of free magnetic energy and its conversion to other forms of energy—kinetic, thermal, and nonthermal. Quantification of partitions between these energy components and their evolution is needed to understand the solar flare phenomenon including nonthermal particle acceleration, transport, and escape as well as the thermal plasma heating and cooling. The challenge of remote-sensing diagnostics is that the data are taken with finite spatial resolution and suffer from line-of-sight (LOS) ambiguity including cases when different flaring loops overlap and project one over the other. Here, we address this challenge by devising a data-constrained evolving 3D model of a multiloop SOL2014-02-16T064620 solar flare of GOES class C1.5. Specifically, we employed a 3D magnetic model validated earlier for a single time frame and extended it to cover the entire flare evolution. For each time frame we adjusted the distributions of the thermal plasma and nonthermal electrons in the model so that the observables synthesized from the model matched the observations. Once the evolving model had been validated in this way, we computed and investigated the evolving energy components and other relevant parameters by integrating over the model volume. This approach removes the LOS ambiguity and permits us to disentangle contributions from the overlapping loops. It reveals new facets of electron acceleration and transport as well as of the heating and cooling of the flare plasma in 3D. We find signatures of substantial direct heating of the flare plasma not associated with the energy loss of nonthermal electrons.more » « less
-
Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particular, simultaneously observations of the radiation continuum across an extended frequency range would facilitate the mapping of different layers and thus ultimately the 3D structure of the solar atmosphere. Mapping large regions on the Sun or even the whole solar disk at a very high temporal cadence would be crucial for systematically detecting and following the temporal evolution of flares, while synoptic observations, i.e., daily maps, over periods of years would provide an unprecedented view of the solar activity cycle in this wavelength regime. As our Sun is a fundamental reference for studying the atmospheres of active main sequence stars, observing the Sun and other stars with the same instrument would unlock the enormous diagnostic potential for understanding stellar activity and its impact on exoplanets. The Atacama Large Aperture Submillimeter Telescope (AtLAST), a single-dish telescope with 50m aperture proposed to be built in the Atacama desert in Chile, would be able to provide these observational capabilities. Equipped with a large number of detector elements for probing the radiation continuum across a wide frequency range, AtLAST would address a wide range of scientific topics including the thermal structure and heating of the solar chromosphere, flares and prominences, and the solar activity cycle. In this white paper, the key science cases and their technical requirements for AtLAST are discussed.more » « less
-
Abstract Nonpotential magnetic energy promptly released in solar flares is converted to other forms of energy. This may include nonthermal energy of flare-accelerated particles, thermal energy of heated flaring plasma, and kinetic energy of eruptions, jets, upflows/downflows, and stochastic (turbulent) plasma motions. The processes or parameters governing partitioning of the released energy between these components are an open question. How these components are distributed between distinct flaring loops and what controls these spatial distributions are also unclear. Here, based on multiwavelength data and 3D modeling, we quantify the energy partitioning and spatial distribution in the well-observed SOL2014-02-16T064620 solar flare of class C1.5. Nonthermal emission of this flare displayed a simple impulsive single-spike light curve lasting about 20 s. In contrast, the thermal emission demonstrated at least three distinct heating episodes, only one of which was associated with the nonthermal component. The flare was accompanied by upflows and downflows and substantial turbulent velocities. The results of our analysis suggest that (i) the flare occurs in a multiloop system that included at least three distinct flux tubes; (ii) the released magnetic energy is divided unevenly between the thermal and nonthermal components in these loops; (iii) only one of these three flaring loops contains an energetically important amount of nonthermal electrons, while two other loops remain thermal; (iv) the amounts of direct plasma heating and that due to nonthermal electron loss are comparable; and (v) the kinetic energy in the flare footpoints constitutes only a minor fraction compared with the thermal and nonthermal energies.more » « less
An official website of the United States government
